Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Phenyl 3,5-di-tert-butyl-2-hydroxybenzoate

Alexander Carreño,^a Marcelo Preite,^b Juan Manuel Manriquez,^{b,c} Andrés Vega^{d,e} and Ivonne Chavez^{b,c}*

^aPrograma de Doctorado, Fisico-Química Molecular, Universidad Andres Bello, Avenida República 275 Segundo Piso, Santiago, Chile, ^bDepartamento de Ouímica Orgánica, Facultad de Química, Pontificia Universidad Católica, Santiago, Chile, ^cCasilla 306 Correo 22, Santiago, Chile, ^dDepartamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Avenida República 275 3er Piso, Santiago, Chile, and Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Chile Correspondence e-mail: ichavez@uc.cl

Received 12 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.153; data-to-parameter ratio = 15.1.

The title molecule, $C_{21}H_{26}O_3$, has a six-membered planar carbon ring as the central core, substituted at position 1 with phenoxycarbonyl, at position 2 with hydroxy and at positions 3 and 5 with tert-butyl groups. The structure shows two independent but very similar molecules within the asymmetric unit. For both independent molecules, the ester carboxylate group is coplanar with the central core, as reflected by the small C-C-O-C torsion angles [179.95 (17) and $173.70 (17)^{\circ}$]. In contrast, the phenyl substituent is almost perpendicular to the carboxylate -CO₂ fragment, as reflected by C–O–C–C torsion angles, ranging from 74 to 80° . The coplanarity between the central aromatic ring and the ester carboxylate -CO₂- group allows the formation of an intramolecular hydrogen bond, with $O \cdots O$ distances of 2.563 (2) and 2.604 (2) Å.

Related literature

For the synthesis of the title compound, see: Moore et al. (2008); Benisvy et al. (2004). For similar molecules, see: Baptista (1966); Bilgram et al. (1982); Hammond et al. (2002).

Experimental

Crystal data

$C_{21}H_{26}O_3$	$\gamma = 92.728 \ (2)^{\circ}$
$M_r = 326.42$	V = 1931.0 (4) Å ³
Triclinic, $P\overline{1}$	Z = 4
a = 10.5691 (11) Å	Mo $K\alpha$ radiation
b = 12.2590 (13) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 15.0534 (16) Å	$T = 297 { m K}$
$\alpha = 96.400 \ (2)^{\circ}$	$0.50 \times 0.21 \times 0.20$ mm
$\beta = 93.813 \ (2)^{\circ}$	

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.964, T_{\max} = 0.985$

Refinement

ł

v

S 6

$R[F^2 > 2\sigma(F^2)] = 0.053$	445 parameters
$\nu R(F^2) = 0.153$	H-atom parameters constrained
f = 1.01	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
736 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ \AA}^{-3}$

12058 measured reflections

 $R_{\rm int} = 0.023$

6736 independent reflections

4140 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O2	0.82	1.83	2.563 (2)	148
O4−H4···O5	0.82	1.88	2.604 (2)	147

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

The authors acknowledge financial support from UNAB-DI-28-10/I and Millenium Project No. P07-006-F. AV is a member of Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia FB0807. AC acknowledges Universidad Andres Bello for a Doctoral Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2371).

References

- Baptista, A. (1966). An. Acad. Bras. Cienc. 38, 415.
- Benisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., Guindy, C. I., McInnes, E. J. L., McArdle, G., McMaster, J., Wilson, C. & Woloska, J. (2004). Dalton Trans. pp. 3647-3653.
- Bilgram, J. H., Durig, U., Wachter, M. & Seiler, P. (1982). J. Cryst. Growth, 57, 1-5.
- Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS and SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hammond, R. B., Jones, M. J., Roberts, K. J., Kutzke, H. & Klapper, H. (2002). Z. Kristallogr. 217, 484-485.
- Moore, G. F., Hambourger, M., Gervaldo, M., Poluektov, O. G., Rajh, T., Gust, D., Moore, T. A. & Moore, A. L. (2008). J. Am. Chem. Soc. 130, 10466-10467
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o3290 [doi:10.1107/S1600536810044028]

Phenyl 3,5-di-tert-butyl-2-hydroxybenzoate

A. Carreño, M. Preite, J. M. Manriquez, A. Vega and I. Chavez

Comment

Benzoate phenyl esters have been described to be precursors of benzimidazole molecules by reaction with 1,2-phenylenediamine (Moore *et al.*, 2008). The crystal shows two independent but very similar molecules within the asymmetric unit. For both independent molecules, the carboxylic acid group from ester is coplanar with the central core, as reflected by the small C—C—O—C torsion angles (C1—C7—O3—C16, 179.95 (17)°; C22—C28—O6—C37 173.70 (17)°), while the phenyl substituent is almost perpendicular to the carboxylate CO₂ fragment (C7—O3—C16—C21 110.4 (2)°; C7—O3—C16—C17 - 74.1 (3)° and C28—O6—C37—C38 - 69.2 (3)°; C28—O6—C37—C42 117.4 (2)°). The co-planarity between the central aromatic ring and the carboxylate CO₂ group from ester allows the definition of a intramolecular hydrogen bond, with O…O 2.563 (2) and 2.604 (2) Å.

The structure is closely related to that of the unsubstituted 2-hydroxybenzoic acid phenyl ester (Baptista, 1966; Bilgram *et al.* 1982; Hammond *et al.*, 2002), where the carboxylate group is almost coplanar to the phenyl ring where is attached (C—C—O—C less than 2° deviated from 180°) and the benzoate phenyl almost perpendicular to the carboxylate (C—O—C 75.8° and -100.5°).

The phenyl rings from the benzoate from each of the two molecules within the asymmetric unit defines a weak $\pi \cdots \pi$ interaction with $Cg^{1}(C16, C17, C18, C19, C20, C21) \cdots Cg^{2}(C37, C38, C39, C40, C41, C41)$ 3.903 (2) Å].

Experimental

The compound was prepared by methods described in literature (Benisvy *et al.*, 2004) slighty modified by using CHCl₃ for crystallization instead of pentane. The title compound was prepared in a 40% yield.

Refinement

The H-atoms positions were calculated after each cycle of refinement using a riding model for each structure, with C—H distances in the range 0.93 to 0.96 Å. $U_{iso}(H)$ values were set equal to $1.5U_{eq}$ of the parent carbon atom for methyl groups and $1.2U_{eq}$ for the others. The hydroxyl hydrogen atoms were located in the difference Fourier map, but were subsequentely refined with constraints, O—H 0.82 Å and $U_{iso}(H)$ 1.5 U_{eq} of the parent oxygen atom.

Figures

Fig. 1. Molecular structure diagram showing the two independent molecules of **I** within the crystal, with atom numbering scheme. Displacement ellipsoids are at 25% probability level and H atoms are shown as spheres of arbitrary radii. Intramolecular hydrogen bonds are shown using a dotted line.

Phenyl 3,5-di-tert-butyl-2-hydroxybenzoate

C ₂₁ H ₂₆ O ₃	Z = 4
$M_r = 326.42$	F(000) = 704
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.123 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.5691 (11) Å	Cell parameters from 2560 reflections
b = 12.2590 (13) Å	$\theta = 2.3 - 22.7^{\circ}$
c = 15.0534 (16) Å	$\mu=0.07~mm^{-1}$
$\alpha = 96.400 \ (2)^{\circ}$	<i>T</i> = 297 K
$\beta = 93.813 \ (2)^{\circ}$	Colourless, block
$\gamma = 92.728 \ (2)^{\circ}$	$0.50\times0.21\times0.20~mm$
V = 1931.0 (4) Å ³	

Data collection

Siemens SMART CCD area-detector diffractometer	6736 independent reflections
Radiation source: fine-focus sealed tube	4140 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -12 \rightarrow 12$
$T_{\min} = 0.964, \ T_{\max} = 0.985$	$k = -14 \rightarrow 14$
12058 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.153$	H-atom parameters constrained

<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0783P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
6736 reflections	$(\Delta/\sigma)_{max} < 0.001$
445 parameters	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or eq	uivalent isotropic d	displacement	parameters ($(Å^2$)
-----------------------------------	-----------------	----------------------	--------------	--------------	--------	---

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.28649 (18)	0.60650 (15)	0.14800 (13)	0.0465 (5)
C2	0.39947 (18)	0.55813 (15)	0.17139 (13)	0.0477 (5)
C3	0.43181 (18)	0.54106 (16)	0.26117 (13)	0.0492 (5)
C4	0.34696 (19)	0.57713 (16)	0.32313 (13)	0.0520 (5)
H4A	0.3666	0.5672	0.3827	0.062*
C5	0.23390 (18)	0.62743 (15)	0.30273 (13)	0.0489 (5)
C6	0.20550 (18)	0.64095 (16)	0.21424 (13)	0.0497 (5)
H6	0.1310	0.6736	0.1981	0.060*
C7	0.2566 (2)	0.62093 (16)	0.05325 (14)	0.0524 (5)
C8	0.5538 (2)	0.48601 (18)	0.28850 (14)	0.0587 (6)
C9	0.5530 (3)	0.3694 (2)	0.23936 (18)	0.0877 (8)
H9A	0.5513	0.3731	0.1759	0.131*
H9B	0.4793	0.3274	0.2529	0.131*
Н9С	0.6281	0.3348	0.2585	0.131*
C10	0.6714 (2)	0.5544 (3)	0.26778 (19)	0.0925 (9)
H10A	0.6688	0.5606	0.2047	0.139*
H10B	0.7467	0.5190	0.2854	0.139*
H10C	0.6723	0.6264	0.3003	0.139*
C11	0.5654 (2)	0.4759 (2)	0.38918 (15)	0.0798 (7)
H11A	0.6425	0.4416	0.4041	0.120*
H11B	0.4941	0.4321	0.4045	0.120*
H11C	0.5668	0.5478	0.4221	0.120*
C12	0.1488 (2)	0.66550 (18)	0.37777 (14)	0.0579 (6)
C13	0.0264 (3)	0.7094 (3)	0.34080 (18)	0.0984 (10)
H13A	0.0461	0.7705	0.3084	0.148*
H13B	-0.0240	0.7331	0.3894	0.148*
H13C	-0.0204	0.6524	0.3013	0.148*

C14	0.1143 (3)	0.5700 (2)	0.42967 (18)	0.0903 (8)
H14A	0.0661	0.5136	0.3904	0.135*
H14B	0.0645	0.5953	0.4781	0.135*
H14C	0.1905	0.5407	0.4533	0.135*
C15	0.2221 (3)	0.7569 (2)	0.4411 (2)	0.1051 (10)
H15A	0.2982	0.7290	0.4663	0.158*
H15B	0.1701	0.7818	0.4884	0.158*
H15C	0.2439	0.8171	0.4083	0.158*
C16	0.1065 (2)	0.67878 (19)	-0.05259 (14)	0.0563 (5)
C17	0.1612 (2)	0.7639 (2)	-0.08992 (16)	0.0721 (7)
H17	0.2260	0.8094	-0.0584	0.086*
C18	0.1182 (3)	0.7812 (2)	-0.17584 (17)	0.0811 (7)
H18	0.1549	0.8385	-0.2027	0.097*
C19	0.0230 (3)	0.7153 (2)	-0.22116 (17)	0.0859 (8)
H19	-0.0048	0.7269	-0.2791	0.103*
C20	-0.0319(3)	0.6321 (2)	-0.18181 (18)	0.0956 (9)
H20	-0.0986	0.5881	-0.2124	0.115*
C21	0.0109 (2)	0.6127 (2)	-0.09681(17)	0.0801 (7)
H21	-0.0254	0.5551	-0.0702	0.096*
C22	0.12793 (17)	0.97781 (16)	0.23838 (13)	0.0473 (5)
C23	0.13758 (18)	1 04161 (16)	0.32194 (13)	0.0496(5)
C24	0 25789 (19)	1.07809 (16)	0.36367 (13)	0.0505(5)
C25	0.36198 (19)	1.04615 (16)	0.31783(13)	0.0505(5)
H25	0.4421	1.0689	0.3447	0.062*
C26	0.35629 (18)	0.98219 (15)	0.23419 (13)	0.002
C27	0.23656 (18)	0.94917 (16)	0.19592 (13)	0.0485(5)
H27	0.2282	0.9068	0.1404	0.058*
C28	0.00075 (19)	0.93956 (16)	0.19638 (14)	0.0514 (5)
C29	0.00075(1)	1 14813 (18)	0.19038(14) 0.45578(14)	0.0514(5)
C30	0.2727(2) 0.2086(2)	1 25680 (19)	0.43970(14) 0.44900(17)	0.0000(0) 0.0786(7)
H30A	0.2000 (2)	1 2051	0.4043	0.118*
H30R	0.2404	1.2931	0.4045	0.118*
H30C	0.2190	1.3014	0.3039	0.118*
C21	0.1190 0.2142(2)	1.2419	0.4320	0.110°
	0.2142(2)	1.0635 (2)	0.52725 (15)	0.0811(7)
IIJIA II21D	0.1237	1.0080	0.5105	0.122*
	0.2233	1.1303	0.5320	0.122*
	0.2370 0.4126(2)	1.0100 1.1771(2)	0.3320	0.122°
C32	0.4130 (2)	1.1//1(2)	0.48029 (10)	0.0781 (7)
П32А 1122D	0.4300	1.1107	0.4919	0.117*
П32Б	0.4190	1.2210	0.3432	0.117*
H32C	0.4525	0.0402((17)	0.4428	0.11/*
C33	0.47800 (18)	0.94930(17)	0.19175(14)	0.0364 (6)
U34	0.5428 (2)	0.8673 (2)	0.24641 (18)	0.0914 (9)
п 34А 1124D	0.3088	0.9024	0.3034	$0.13/^{+}$ 0.127*
п 34 В	0.0138	0.8413	0.2170	0.127*
H34C	0.4841	0.8061	0.2507	0.13/*
U35	0.5688 (2)	1.0500 (2)	0.1888 (2)	0.0921 (9)
H35A	0.5279	1.1012	0.1541	0.138*
H35B	0.6445	1.0276	0.1618	0.138*

H35C	0.5905	1.0845	0.2487	0.138*
C36	0.4521 (2)	0.8948 (2)	0.09531 (16)	0.0810 (7)
H36A	0.4005	0.8282	0.0951	0.122*
H36B	0.5309	0.8781	0.0701	0.122*
H36C	0.4082	0.9440	0.0603	0.122*
C37	-0.10673 (18)	0.83525 (18)	0.06791 (14)	0.0545 (5)
C38	-0.1617 (2)	0.74454 (19)	0.09664 (15)	0.0671 (6)
H38	-0.1317	0.7198	0.1499	0.081*
C39	-0.2638 (2)	0.6893 (2)	0.04492 (17)	0.0752 (7)
H39	-0.3031	0.6271	0.0635	0.090*
C40	-0.3064 (2)	0.7267 (2)	-0.03333 (17)	0.0750 (7)
H40	-0.3749	0.6900	-0.0679	0.090*
C41	-0.2489 (2)	0.8176 (2)	-0.06085 (17)	0.0782 (7)
H41	-0.2779	0.8421	-0.1144	0.094*
C42	-0.1484 (2)	0.87318 (19)	-0.01006 (16)	0.0678 (6)
H42	-0.1093	0.9356	-0.0285	0.081*
01	0.48062 (13)	0.52679 (12)	0.10891 (9)	0.0666 (4)
H1	0.4516	0.5399	0.0596	0.100*
O2	0.32547 (15)	0.59790 (14)	-0.00665 (10)	0.0731 (5)
O3	0.14275 (14)	0.66219 (13)	0.03719 (9)	0.0661 (4)
O4	0.03285 (13)	1.06905 (12)	0.36496 (10)	0.0678 (4)
H4	-0.0306	1.0390	0.3364	0.102*
O5	-0.09842 (14)	0.95344 (13)	0.23141 (10)	0.0669 (4)
O6	0.00567 (13)	0.88675 (13)	0.11387 (10)	0.0666 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0491 (12)	0.0432 (11)	0.0472 (12)	0.0004 (9)	0.0068 (9)	0.0040 (9)
C2	0.0475 (12)	0.0450 (12)	0.0509 (12)	0.0014 (9)	0.0123 (10)	0.0015 (9)
C3	0.0493 (12)	0.0464 (12)	0.0512 (12)	0.0012 (9)	0.0036 (10)	0.0034 (9)
C4	0.0572 (13)	0.0521 (13)	0.0464 (12)	0.0001 (10)	0.0019 (10)	0.0069 (10)
C5	0.0543 (13)	0.0459 (12)	0.0473 (12)	0.0017 (10)	0.0080 (9)	0.0068 (9)
C6	0.0458 (11)	0.0493 (12)	0.0552 (13)	0.0050 (9)	0.0053 (9)	0.0090 (10)
C7	0.0574 (13)	0.0492 (13)	0.0507 (13)	0.0018 (10)	0.0068 (11)	0.0049 (10)
C8	0.0543 (13)	0.0634 (14)	0.0575 (13)	0.0105 (11)	-0.0014 (10)	0.0038 (11)
С9	0.0928 (19)	0.0795 (18)	0.0883 (19)	0.0381 (15)	-0.0122 (15)	-0.0038 (15)
C10	0.0503 (15)	0.123 (2)	0.106 (2)	-0.0012 (14)	-0.0013 (13)	0.0260 (18)
C11	0.0799 (17)	0.0903 (19)	0.0696 (17)	0.0216 (14)	-0.0084 (13)	0.0117 (14)
C12	0.0620 (14)	0.0644 (14)	0.0506 (12)	0.0107 (11)	0.0144 (10)	0.0115 (11)
C13	0.090 (2)	0.138 (3)	0.0796 (18)	0.0518 (19)	0.0366 (15)	0.0316 (17)
C14	0.100 (2)	0.100 (2)	0.0811 (18)	0.0157 (16)	0.0397 (15)	0.0321 (16)
C15	0.111 (2)	0.101 (2)	0.096 (2)	-0.0011 (18)	0.0316 (18)	-0.0324 (17)
C16	0.0592 (13)	0.0633 (14)	0.0469 (12)	0.0070 (11)	0.0015 (10)	0.0093 (11)
C17	0.0699 (16)	0.0745 (17)	0.0712 (16)	-0.0074 (13)	-0.0078 (12)	0.0183 (13)
C18	0.0847 (18)	0.0844 (18)	0.0784 (18)	-0.0052 (15)	-0.0023 (15)	0.0365 (15)
C19	0.102 (2)	0.092 (2)	0.0635 (16)	-0.0005 (17)	-0.0178 (15)	0.0251 (15)
C20	0.117 (2)	0.088 (2)	0.0746 (18)	-0.0269 (17)	-0.0302 (16)	0.0170 (16)

C21	0.0974 (19)	0.0727 (17)	0.0687 (16)	-0.0194 (14)	-0.0103 (14)	0.0219 (13)
C22	0.0419 (11)	0.0487 (12)	0.0511 (12)	-0.0020 (9)	0.0008 (9)	0.0079 (9)
C23	0.0445 (12)	0.0524 (12)	0.0528 (12)	0.0011 (9)	0.0067 (10)	0.0082 (10)
C24	0.0491 (12)	0.0516 (12)	0.0499 (12)	-0.0010 (10)	0.0004 (10)	0.0051 (10)
C25	0.0458 (12)	0.0541 (13)	0.0534 (12)	-0.0059 (9)	-0.0044 (10)	0.0040 (10)
C26	0.0465 (12)	0.0471 (12)	0.0531 (12)	-0.0034 (9)	0.0026 (9)	0.0083 (10)
C27	0.0481 (12)	0.0497 (12)	0.0464 (11)	-0.0018 (9)	0.0022 (9)	0.0035 (9)
C28	0.0473 (13)	0.0517 (13)	0.0554 (13)	-0.0019 (10)	0.0039 (10)	0.0080 (10)
C29	0.0639 (14)	0.0613 (14)	0.0524 (13)	0.0021 (11)	-0.0011 (10)	-0.0007 (11)
C30	0.0900 (18)	0.0670 (16)	0.0741 (16)	0.0089 (13)	-0.0019 (14)	-0.0093 (13)
C31	0.0917 (19)	0.097 (2)	0.0540 (14)	-0.0001 (15)	0.0044 (13)	0.0074 (13)
C32	0.0756 (17)	0.0820 (17)	0.0690 (16)	-0.0014 (13)	-0.0111 (13)	-0.0137 (13)
C33	0.0455 (12)	0.0562 (13)	0.0666 (14)	-0.0007 (10)	0.0067 (10)	0.0030 (11)
C34	0.0792 (18)	0.103 (2)	0.097 (2)	0.0371 (16)	0.0107 (15)	0.0182 (17)
C35	0.0641 (16)	0.0845 (19)	0.125 (2)	-0.0144 (14)	0.0310 (15)	-0.0090 (17)
C36	0.0643 (16)	0.103 (2)	0.0730 (17)	0.0057 (14)	0.0162 (12)	-0.0098 (14)
C37	0.0394 (11)	0.0659 (14)	0.0553 (13)	-0.0075 (10)	0.0004 (10)	-0.0003 (11)
C38	0.0653 (15)	0.0770 (17)	0.0575 (14)	-0.0098 (13)	-0.0042 (11)	0.0129 (12)
C39	0.0727 (16)	0.0735 (17)	0.0770 (17)	-0.0200 (13)	0.0010 (14)	0.0104 (13)
C40	0.0592 (15)	0.0844 (19)	0.0752 (17)	-0.0148 (13)	-0.0154 (12)	0.0018 (14)
C41	0.0771 (17)	0.0809 (18)	0.0742 (16)	-0.0055 (14)	-0.0209 (13)	0.0182 (14)
C42	0.0648 (15)	0.0634 (15)	0.0736 (16)	-0.0117 (12)	-0.0096 (12)	0.0165 (12)
01	0.0627 (9)	0.0829 (11)	0.0561 (9)	0.0173 (8)	0.0136 (7)	0.0047 (8)
O2	0.0808 (11)	0.0938 (12)	0.0486 (9)	0.0266 (9)	0.0174 (8)	0.0093 (8)
O3	0.0598 (9)	0.0918 (11)	0.0493 (9)	0.0173 (8)	0.0047 (7)	0.0145 (8)
O4	0.0505 (9)	0.0833 (11)	0.0667 (10)	0.0006 (8)	0.0095 (7)	-0.0061 (8)
05	0.0442 (9)	0.0794 (11)	0.0739 (10)	-0.0023 (7)	0.0051 (7)	-0.0037 (8)
	0.0474(0)	0.0802(11)	0.0579(9)	-0.0118(8)	0.0004(7)	-0.0066(8)

Geometric parameters (Å, °)

1.400 (3)	C22—C27	1.391 (3)
1.400 (3)	C22—C23	1.400 (3)
1.472 (3)	C22—C28	1.479 (3)
1.351 (2)	C23—O4	1.356 (2)
1.413 (3)	C23—C24	1.410 (3)
0.8200	O4—H4	0.8200
1.388 (3)	C24—C25	1.386 (3)
1.537 (3)	C24—C29	1.542 (3)
1.534 (3)	C28—O5	1.215 (2)
1.532 (3)	C28—O6	1.340 (2)
1.535 (3)	C29—C30	1.533 (3)
0.9600	C29—C31	1.535 (3)
0.9600	C29—C32	1.542 (3)
0.9600	С30—Н30А	0.9600
0.9600	С30—Н30В	0.9600
0.9600	C30—H30C	0.9600
0.9600	C31—H31A	0.9600
0.9600	C31—H31B	0.9600
	$\begin{array}{c} 1.400 (3) \\ 1.400 (3) \\ 1.472 (3) \\ 1.351 (2) \\ 1.413 (3) \\ 0.8200 \\ 1.388 (3) \\ 1.537 (3) \\ 1.537 (3) \\ 1.534 (3) \\ 1.532 (3) \\ 1.535 (3) \\ 0.9600 \\$	1.400 (3) $C22C27$ $1.400 (3)$ $C22C23$ $1.472 (3)$ $C22C28$ $1.351 (2)$ $C23O4$ $1.413 (3)$ $C23C24$ 0.8200 $O4H4$ $1.388 (3)$ $C24C25$ $1.537 (3)$ $C28O5$ $1.534 (3)$ $C28O6$ $1.535 (3)$ $C29C30$ 0.9600 $C29C32$ 0.9600 $C30H30A$ 0.9600 $C30H30B$ 0.9600 $C31H31A$ 0.9600 $C31H31B$

C11—H11B	0.9600	С31—Н31С	0.9600
C11—H11C	0.9600	C25—C26	1.403 (3)
C4—C5	1.402 (3)	С25—Н25	0.9300
C4—H4A	0.9300	C26—C27	1.378 (3)
C5—C6	1.376 (3)	C26—C33	1.531 (3)
C5—C12	1.536 (3)	С27—Н27	0.9300
C12—C13	1.520 (3)	C32—H32A	0.9600
C12—C14	1.522 (3)	С32—Н32В	0.9600
C12—C15	1.531 (3)	С32—Н32С	0.9600
C13—H13A	0.9600	C33—C34	1.525 (3)
C13—H13B	0.9600	C33—C35	1.529 (3)
C13—H13C	0.9600	C33—C36	1.531 (3)
C14—H14A	0.9600	C34—H34A	0.9600
C14—H14B	0.9600	C34—H34B	0.9600
C14—H14C	0.9600	C34—H34C	0.9600
C15—H15A	0.9600	С35—Н35А	0.9600
C15—H15B	0.9600	С35—Н35В	0.9600
C15—H15C	0.9600	С35—Н35С	0.9600
С6—Н6	0.9300	O6—C37	1.418 (2)
С7—О2	1.213 (2)	С36—Н36А	0.9600
С7—ОЗ	1.345 (2)	С36—Н36В	0.9600
O3—C16	1.419 (2)	С36—Н36С	0.9600
C16—C21	1.354 (3)	C37—C38	1.357 (3)
C16—C17	1.362 (3)	C37—C42	1.364 (3)
C17—C18	1.384 (3)	C38—C39	1.389 (3)
С17—Н17	0.9300	С38—Н38	0.9300
C18—C19	1.357 (3)	C39—C40	1.368 (3)
C18—H18	0.9300	С39—Н39	0.9300
C19—C20	1.361 (3)	C40—C41	1.361 (3)
С19—Н19	0.9300	C40—H40	0.9300
C20—C21	1.378 (3)	C41—C42	1.373 (3)
С20—Н20	0.9300	C41—H41	0.9300
C21—H21	0.9300	С42—Н42	0.9300
C6—C1—C2	119 99 (18)	C27—C22—C23	120 52 (18)
C6-C1-C7	121 49 (18)	$C_{27} - C_{22} - C_{28}$	120.32(10) 120.31(18)
C2-C1-C7	118.51 (17)	C23—C22—C28	119.17 (18)
01—C2—C1	121.01 (18)	04-C23-C22	121.38 (18)
01	118.21 (17)	04-C23-C24	118.46 (18)
C1 - C2 - C3	120 78 (17)	$C_{22} - C_{23} - C_{24}$	120 16 (18)
С2—О1—Н1	109.5	C23—O4—H4	109.5
C4—C3—C2	116.01 (18)	C25—C24—C23	116.26 (18)
C4—C3—C8	122.06 (18)	C25—C24—C29	121.95 (18)
C2—C3—C8	121.93 (17)	C23—C24—C29	121.78 (18)
C9—C8—C11	107.30 (19)	O5—C28—O6	122.67 (18)
C9—C8—C10	110.2 (2)	05-C28-C22	124.8 (2)
C11—C8—C10	107.08 (19)	O6—C28—C22	112.52 (18)
C9—C8—C3	110.12 (18)	C30—C29—C31	110.5 (2)
C11—C8—C3	111.52 (17)	C30—C29—C24	109.31 (17)
C10—C8—C3	110.54 (19)	C31—C29—C24	110.49 (18)

С8—С9—Н9А	109.5	C30—C29—C32	107.23 (19)
С8—С9—Н9В	109.5	C31—C29—C32	107.82 (18)
Н9А—С9—Н9В	109.5	C24—C29—C32	111.45 (18)
С8—С9—Н9С	109.5	С29—С30—Н30А	109.5
Н9А—С9—Н9С	109.5	С29—С30—Н30В	109.5
Н9В—С9—Н9С	109.5	H30A—C30—H30B	109.5
C8—C10—H10A	109.5	С29—С30—Н30С	109.5
C8—C10—H10B	109.5	H30A-C30-H30C	109.5
H10A—C10—H10B	109.5	H30B-C30-H30C	109.5
C8—C10—H10C	109.5	C29—C31—H31A	109.5
H10A-C10-H10C	109.5	С29—С31—Н31В	109.5
H10B-C10-H10C	109.5	H31A—C31—H31B	109.5
C8—C11—H11A	109.5	C29—C31—H31C	109.5
C8—C11—H11B	109.5	H31A—C31—H31C	109.5
H11A—C11—H11B	109.5	H31B—C31—H31C	109.5
C8—C11—H11C	109.5	C24—C25—C26	125.29 (18)
H11A—C11—H11C	109.5	С24—С25—Н25	117.4
H11B-C11-H11C	109.5	С26—С25—Н25	117.4
C3—C4—C5	124.99 (18)	C27—C26—C25	116.23 (18)
C3—C4—H4A	117.5	C27—C26—C33	123.47 (18)
С5—С4—Н4А	117.5	C25—C26—C33	120.26 (18)
C6—C5—C4	116.93 (18)	C26—C27—C22	121.53 (19)
C6—C5—C12	123.04 (18)	С26—С27—Н27	119.2
C4—C5—C12	120.03 (17)	С22—С27—Н27	119.2
C13—C12—C14	108.2 (2)	С29—С32—Н32А	109.5
C13—C12—C15	109.0 (2)	С29—С32—Н32В	109.5
C14—C12—C15	109.5 (2)	H32A—C32—H32B	109.5
C13—C12—C5	111.69 (18)	С29—С32—Н32С	109.5
C14—C12—C5	110.08 (18)	H32A—C32—H32C	109.5
C15—C12—C5	108.38 (18)	H32B—C32—H32C	109.5
C12—C13—H13A	109.5	C34—C33—C35	110.0 (2)
С12—С13—Н13В	109.5	C34—C33—C36	108.1 (2)
H13A—C13—H13B	109.5	C35—C33—C36	107.2 (2)
C12—C13—H13C	109.5	C34—C33—C26	108.84 (18)
H13A—C13—H13C	109.5	C35—C33—C26	110.91 (17)
H13B—C13—H13C	109.5	C36—C33—C26	111.75 (17)
C12—C14—H14A	109.5	С33—С34—Н34А	109.5
C12—C14—H14B	109.5	C33—C34—H34B	109.5
H14A—C14—H14B	109.5	H34A—C34—H34B	109.5
C12—C14—H14C	109.5	C33—C34—H34C	109.5
H14A—C14—H14C	109.5	H34A—C34—H34C	109.5
H14B—C14—H14C	109.5	H34B—C34—H34C	109.5
C12—C15—H15A	109.5	С33—С35—Н35А	109.5
C12—C15—H15B	109.5	С33—С35—Н35В	109.5
H15A—C15—H15B	109.5	H35A—C35—H35B	109.5
C12—C15—H15C	109.5	С33—С35—Н35С	109.5
H15A—C15—H15C	109.5	H35A—C35—H35C	109.5
H15B—C15—H15C	109.5	H35B—C35—H35C	109.5
C5—C6—C1	121.29 (18)	C28—O6—C37	119.58 (16)

С5—С6—Н6	119.4	С33—С36—Н36А	109.5
С1—С6—Н6	119.4	С33—С36—Н36В	109.5
O2—C7—O3	121.45 (19)	H36A—C36—H36B	109.5
O2—C7—C1	124.78 (19)	С33—С36—Н36С	109.5
O3—C7—C1	113.76 (18)	H36A—C36—H36C	109.5
C7—O3—C16	117.41 (15)	H36B—C36—H36C	109.5
C21—C16—C17	121.7 (2)	C38—C37—C42	122.0 (2)
C21—C16—O3	118.0 (2)	C38—C37—O6	120.11 (19)
C17—C16—O3	120.1 (2)	C42—C37—O6	117.56 (19)
C16—C17—C18	118.4 (2)	C37—C38—C39	118.7 (2)
С16—С17—Н17	120.8	С37—С38—Н38	120.7
С18—С17—Н17	120.8	С39—С38—Н38	120.7
C19—C18—C17	120.5 (2)	C40—C39—C38	119.8 (2)
C19—C18—H18	119.7	С40—С39—Н39	120.1
C17—C18—H18	119.7	С38—С39—Н39	120.1
C18—C19—C20	120.0 (2)	C41—C40—C39	120.3 (2)
С18—С19—Н19	120.0	C41—C40—H40	119.9
С20—С19—Н19	120.0	С39—С40—Н40	119.9
C19—C20—C21	120.3 (2)	C40—C41—C42	120.4 (2)
С19—С20—Н20	119.9	C40—C41—H41	119.8
C21—C20—H20	119.9	C42—C41—H41	119.8
C16—C21—C20	119.1 (2)	C37—C42—C41	118.8 (2)
C16—C21—H21	120.5	С37—С42—Н42	120.6
C20-C21-H21	120.5	C41—C42—H42	120.6
C6—C1—C2—O1	-178.32 (17)	C27—C22—C23—O4	-179.05 (17)
C7—C1—C2—O1	1.0 (3)	C28—C22—C23—O4	-0.1 (3)
C6—C1—C2—C3	1.5 (3)	C27—C22—C23—C24	0.4 (3)
C7—C1—C2—C3	-179.15 (17)	C28—C22—C23—C24	179.38 (17)
O1—C2—C3—C4	178.44 (17)	O4—C23—C24—C25	178.80 (17)
C1—C2—C3—C4	-1.4 (3)	C22—C23—C24—C25	-0.7 (3)
O1—C2—C3—C8	-1.4 (3)	O4—C23—C24—C29	-0.3 (3)
C1—C2—C3—C8	178.72 (18)	C22—C23—C24—C29	-179.78 (18)
C4—C3—C8—C9	119.9 (2)	C27—C22—C28—O5	174.2 (2)
C2—C3—C8—C9	-60.2 (3)	C23—C22—C28—O5	-4.8 (3)
C4—C3—C8—C11	0.9 (3)	C27—C22—C28—O6	-5.8 (3)
C2—C3—C8—C11	-179.18 (19)	C23—C22—C28—O6	175.22 (17)
C4—C3—C8—C10	-118.1 (2)	C25—C24—C29—C30	119.3 (2)
C2—C3—C8—C10	61.8 (3)	C23—C24—C29—C30	-61.6 (3)
C2—C3—C4—C5	0.4 (3)	C25—C24—C29—C31	-118.9 (2)
C8—C3—C4—C5	-179.69 (18)	C23—C24—C29—C31	60.2 (3)
C3—C4—C5—C6	0.5 (3)	C25—C24—C29—C32	0.9 (3)
C3—C4—C5—C12	-179.01 (18)	C23—C24—C29—C32	-179.98 (19)
C6—C5—C12—C13	5.1 (3)	C23—C24—C25—C26	0.6 (3)
C4—C5—C12—C13	-175.5 (2)	C29—C24—C25—C26	179.70 (18)
C6—C5—C12—C14	125.3 (2)	C24—C25—C26—C27	-0.2 (3)
C4—C5—C12—C14	-55.3 (3)	C24—C25—C26—C33	-178.11 (18)
C6—C5—C12—C15	-115.0 (2)	C25—C26—C27—C22	-0.1 (3)
C4—C5—C12—C15	64.4 (3)	C33—C26—C27—C22	177.72 (18)
C4—C5—C6—C1	-0.4 (3)	C23—C22—C27—C26	0.0 (3)

C12—C5—C6—C1	179.08 (18)	C28—C22—C27—C26	-178.95 (18)
C2-C1-C6-C5	-0.6 (3)	C27—C26—C33—C34	-108.6 (2)
C7—C1—C6—C5	-179.91 (18)	C25—C26—C33—C34	69.1 (2)
C6—C1—C7—O2	176.21 (19)	C27—C26—C33—C35	130.3 (2)
C2—C1—C7—O2	-3.1 (3)	C25—C26—C33—C35	-52.0 (3)
C6—C1—C7—O3	-4.3 (3)	C27—C26—C33—C36	10.7 (3)
C2—C1—C7—O3	176.35 (17)	C25—C26—C33—C36	-171.57 (19)
O2—C7—O3—C16	-0.6 (3)	O5—C28—O6—C37	-6.3 (3)
C1—C7—O3—C16	179.95 (17)	C22-C28-O6-C37	173.70 (17)
C7—O3—C16—C21	110.4 (2)	C28—O6—C37—C38	-69.2 (3)
C7—O3—C16—C17	-74.1 (3)	C28—O6—C37—C42	117.4 (2)
C21—C16—C17—C18	-1.0 (4)	C42—C37—C38—C39	-0.3 (3)
O3—C16—C17—C18	-176.3 (2)	O6—C37—C38—C39	-173.3 (2)
C16—C17—C18—C19	0.6 (4)	C37—C38—C39—C40	0.2 (4)
C17—C18—C19—C20	0.7 (4)	C38—C39—C40—C41	0.2 (4)
C18—C19—C20—C21	-1.6 (5)	C39—C40—C41—C42	-0.6 (4)
C17—C16—C21—C20	0.1 (4)	C38—C37—C42—C41	-0.1 (4)
O3—C16—C21—C20	175.6 (2)	O6—C37—C42—C41	173.2 (2)
C19—C20—C21—C16	1.2 (4)	C40—C41—C42—C37	0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O1—H1…O2	0.82	1.83	2.563 (2)	148
O4—H4…O5	0.82	1.88	2.604 (2)	147

Fig. 1

